Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Alexandrea J. Blatch, ${ }^{\text {a }}$
Judith A. K. Howard, ${ }^{\text {a }}$
Michael R. Probert, ${ }^{\text {a }}$
Christian A. Smethurst ${ }^{b}$ and Andrew Whiting ${ }^{\text {a * }}$
${ }^{\text {a }}$ Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and ${ }^{\mathbf{b}}$ GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, England

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.095$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]\qquad

Potassium 4-nitrophenylsulfonate monohydrate

The title compound, $\mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{5} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, forms a threedimensional polymeric structure with an O_{8} coordination environment of the K^{+}cation.

Comment

As part of a programme aimed at developing new aza-BaeyerVilliger reactions, we have examined the use of N -alkyl- O arylsulfonylhydroxylamines as potential nitrene equivalents (Hoffman \& Buntain, 1988; Hoffman \& Salvador, 1989a, 1991). Attempts have therefore been made to prepare a range of N -alkyl- O -arylsulfonylhydroxylamines $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{NH} R$ by reacting $R \mathrm{NH}_{2}$ with sulfonyl peroxides $p-X_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{OO}$ $\mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-p-X$, which in turn are accessible from sulfonyl chlorides $p-X_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{Cl}$ by reaction with t - BuOOH (Hoffman \& Cadena, 1977; Hoffman \& Belfoure, 1983; Hoffman \& Salvador, 1989b). The title compound, (I), was isolated as a by-product during this synthesis.

(I)

Numerous esters of 4-nitrophenylsulfonic acid have been structurally characterized, as well as some salts with organic cations (Russell et al., 1994; Chan \& Wong, 2002; Tamura et al., 2002). However, no salt or complex of any metal with this anion has been studied previously.
(I) has a three-dimensional polymeric (catena) crystal structure (Fig. 1). The asymmetric unit comprises one formula unit. The potassium cation is coordinated by eight O atoms, viz. five from the sulfonate groups of four different anions, one from a nitro group of another anion, and two μ_{2}-bridging water molecules. The coordination polyhedron can be described as a distorted monocapped pentagonal bipyramid. The anion links five K^{+}cations, four of them via one O atom each. There is only one case of chelation, the sulfonate atoms O 1 and O 2 coordinated to the same potassium ion, and even this one is highly asymmmetric. The $\mathrm{K}-\mathrm{O} 2$ distance is $0.33 \AA$ longer than $\mathrm{K}-\mathrm{O} 1$ and is by far the longest in the structure.

The aqua bridge is highly asymmetric: the $\mathrm{K}-\mathrm{O}$ distances differ by $0.176 \AA$ and the stronger-bound potassium ion is practically coplanar with the $\mathrm{H}_{2} \mathrm{O}$ plane. The weakly coordinated O 2 atom and the uncoordinated O 5 atom of the nitro group act as acceptors of hydrogen bonds donated by the water molecules. Notwithstanding these differences, both N -

Received 19 February 2006
Accepted 3 March 2006

Figure 1
The environment of a K^{+}cation in the structure of (I) (50% displacement ellipsoids). [Symmetry codes: (i) $1-x, 1-y, 1-z$, (ii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$, (iii) $-x, 1-y, 1-z$, (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$, (v) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.]

O bond lengths are equal within experimental error (mean $1.233(3) \AA$), as are the three $\mathrm{S}-\mathrm{O}$ bond lengths (mean $1.453(3) \AA$). The benzene ring and the nitro group of the anion form a dihedral angle of $11.2(1)^{\circ}$, whereas the $\mathrm{S}-\mathrm{O} 2$ bond is nearly coplanar with the ring: the dihedral angle $\mathrm{C} 2-$ $\mathrm{C} 1-\mathrm{S}-\mathrm{O} 2$ is $9.0(3)^{\circ}$.

Experimental

4-Nitrobenzenesulfonyl peroxide $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2} \mathrm{OOSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$-p (II) was prepared according to Dannley et al. (1970). To a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(5.10 \mathrm{~g}, 36.9 \mathrm{mmol})$ in water (76 ml), ethanol (38 ml) and hydrogen peroxide ($35 \%, 8.75 \mathrm{~g}$) at 253 K a cooled (253 K) solution of 4-nitrobenzenesulfonyl chloride ($7.88 \mathrm{~g}, 35.6 \mathrm{mmol}$) in chloroform $(10 \mathrm{ml})$ was added and the suspension was mixed at full power for 1 min using a Breville Classique ${ }^{\mathrm{TM}}$ blender. Ethanol (80 ml) was added and the solution was mixed for 4 min at low power. The precipitate formed was filtered off, washed with distilled water and recrystallized from acetone to give (II) as a yellow solid ($2.22 \mathrm{~g}, 31 \%$). The filtrate was cooled at 253 K for 24 h , yielding (I) as yellow crystals ($0.160 \mathrm{~g}, 1.2 \%$), m.p. $>593 \mathrm{~K}, \mathrm{IR}, v, \mathrm{~cm}^{-1}: 3065$ (CH aromatic stretch), $1529\left(\mathrm{NO}_{2}\right), 1461\left(\mathrm{SO}_{2}\right) 819$ (p-disubstituted aromatic). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.20(d, 2 \mathrm{H}, \mathrm{CH}$ aromatic, $J 8.6 \mathrm{~Hz}), 8.49(d$, $2 \mathrm{H}, \mathrm{CH}$ aromatic, $J=8.4 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): 123.5 (2 $\left.\times \mathrm{PhCNO}_{2}\right), 126.0(4 \times \mathrm{CH}$ aromatic), $140.0(4 \times \mathrm{CH}$ aromatic $)$, $148.0\left(2 \times \mathrm{PhCSO}_{2}\right)$. The properties of (I) agree with those reported by Kozlov \& Davydov (1965) or Dietze et al. (1989).

Crystal data

$$
\begin{aligned}
& \mathrm{K}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{5} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=259.28 \\
& \text { Monoclinic, } P_{2} / c \\
& a=10.794(1) \AA \\
& b=7.1516(6) \AA \\
& c=12.417(1) \AA \\
& \beta=106.15(1)^{\circ} \\
& V=920.70(14) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Siemens SMART 1K CCD area
detector diffractometer ω scans
Absorption correction: none
9859 measured reflections
2117 independent reflections

> 1596 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.067$
> $\theta_{\max }=27.5^{\circ}$
> $h=-14 \rightarrow 13$
> $k=-9 \rightarrow 9$
> $l=-16 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0364 P)^{2}\right. \\
& \quad+0.9635 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$S=1.05$
2117 reflections
144 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{K}-\mathrm{O} 1^{\text {i }}$	2.712 (2)	$\mathrm{K}-\mathrm{O} 4^{\text {iii }}$	2.802 (2)
$\mathrm{K}-\mathrm{O} 3^{\text {ii }}$	2.765 (2)	$\mathrm{K}-\mathrm{O} 1^{\text {iv }}$	2.819 (2)
$\mathrm{K}-\mathrm{O} 3$	2.775 (2)	$\mathrm{K}-\mathrm{O}^{\text {v }}$	2.955 (3)
K-O6	2.779 (2)	$\mathrm{K}-\mathrm{O} 2^{\mathrm{iv}}$	3.148 (2)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 3^{\text {ii }}$	87.93 (6)	$\mathrm{O} 4^{\mathrm{iii}}-\mathrm{K}-\mathrm{O} 1^{\text {iv }}$	72.37 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 3$	78.99 (6)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O}^{\text {v }}$	85.46 (7)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{K}-\mathrm{O} 3$	151.04 (3)	$\mathrm{O} 3^{\mathrm{ii}}-\mathrm{K}-\mathrm{O}^{\mathrm{v}}$	74.70 (7)
O1 ${ }^{\text {i }}$-K-O6	66.46 (7)	$\mathrm{O} 3-\mathrm{K}-\mathrm{O}^{\text {v }}$	78.56 (7)
O3i $-\mathrm{K}-\mathrm{O} 6$	81.82 (7)	$\mathrm{O} 6-\mathrm{K}-\mathrm{O}^{\text {v }}$	143.93 (7)
O3-K-O6	115.27 (7)	$\mathrm{O} 4^{\mathrm{iii}}-\mathrm{K}-\mathrm{O}^{\mathrm{v}}$	127.38 (7)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 4^{\text {iii }}$	128.10 (7)	$\mathrm{O} 1^{\text {iv }}-\mathrm{K}-\mathrm{Ob}^{\mathrm{v}}$	62.76 (7)
$\mathrm{O} 3^{\text {iii }}-\mathrm{K}-\mathrm{O} 4{ }^{\text {iii }}$	134.60 (7)	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 2^{\text {iv }}$	156.06 (6)
$\mathrm{O} 3-\mathrm{K}-\mathrm{O} 4{ }^{\text {iii }}$	71.80 (7)	$\mathrm{O} 3^{\mathrm{ii}}-\mathrm{K}-\mathrm{O} 2^{\text {iv }}$	70.29 (6)
$\mathrm{O} 6-\mathrm{K}-\mathrm{O} 4^{\text {iii }}$	88.53 (7)	$\mathrm{O} 3-\mathrm{K}-\mathrm{O} 2^{\text {iv }}$	124.93 (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{K}-\mathrm{O} 1^{\text {iv }}$	146.95 (5)	$\mathrm{O} 6-\mathrm{K}-\mathrm{O} 2^{\text {iv }}$	99.66 (7)
$\mathrm{O} 3^{\text {iii }}-\mathrm{K}-\mathrm{O} 1^{\text {iv }}$	91.85 (6)	$\mathrm{O} 4^{\text {iii }}-\mathrm{K}-\mathrm{O} 2^{\text {iv }}$	67.84 (6)
$\mathrm{O} 3-\mathrm{K}-\mathrm{O} 1^{\text {iv }}$	85.63 (6)	$\mathrm{O} 1^{\text {iv }}-\mathrm{K}-\mathrm{O} 2^{\text {iv }}$	47.52 (6)
$\mathrm{O} 6-\mathrm{K}-\mathrm{O} 1^{\text {iv }}$	146.11 (7)	$\mathrm{O}^{\mathrm{v}}-\mathrm{K}-\mathrm{O} 2^{\mathrm{iv}}$	97.73 (7)

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O6-H01 $\cdots \mathrm{O}^{\text {vi }}$	0.78 (4)	2.15 (4)	$2.922(3)$	172 (4)
O6-H02 $_{\text {vii }} \mathrm{O}^{\text {vi }}$	0.85 (4)	2.23 (4)	$3.050(3)$	161 (4)

Symmetry codes: (vi) $x, y+1, z ;($ vii $)-x,-y+2,-z+1$.
Water atoms H 01 and H 02 were located in a difference map and refined isotropically. Benzene H atoms were treated as riding on the C atoms, $\mathrm{C}-\mathrm{H} 0.95 \AA, U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank both the EPSRC and GlaxoSmithKline Pharmaceuticals for a CASE award (to AJB).

References

Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Chan, K. W. Y. \& Wong, W. T. (2002). Acta Cryst. E58, o1048-o1050.
Dannley, R. L., Gagen, J. E. \& Stewart, O. J. (1970). J. Org. Chem. 35, 30763079.

Dietze, P. E.; Hariri R. \& Khattak, J. (1989). J. Org. Chem. 54, 33173320.

Hoffman, R. V. \& Belfoure, E. L. (1983). Synthesis, pp. 34-35.
Hoffman, R. V. \& Buntain, G. A. (1988). J. Org. Chem. 53, 3316-3321.
Hoffman, R. V. \& Cadena, R. (1977). J. Am. Chem. Soc. 99, 8226-8232.
Hoffman, R. V. \& Salvador, J. (1989a). Tetrahedron Lett. 30, 4207-4210.

Hoffman, R. V. \& Salvador, J. (1989b). J. Chem. Soc. Perkin Trans. 1, pp. 13751380.

Hoffman, R. V. \& Salvador, J. (1991). Tetrahedron Lett. 32, 2429-2432.
Kozlov V. V. \& Davydov, A. A. (1965). Zh. Org. Khim. 1, 559-562. (In Russian.)
Russell, V. A., Etter, M. C. \& Ward, M. D. (1994). Chem. Mater. 6, 1206-1217.
Tamura, R., Fujimoto, D., Lepp, Z., Misaki, K., Miura, H., Takahashi, H., Ushio, T., Nakai, T. \& Hirotsu, K. (2002). J. Am. Chem. Soc. 124, 1313913153.

[^0]: © 2006 International Union of Crystallography All rights reserved

